
Formal definitions of asymptotic notation
J. MacCormick, for COMP232

Here are informal definitions of asymptotic notation using dominant terms
(DT):

f ∈ O(g) means DT(f) ≤ DT(g)
f ∈ Θ(g) means DT(f) = DT(g)
f ∈ Ω(g) means DT(f) ≥ DT(g)

Now we give formal deinitions of these concepts.

Formal definition of big-O notation. Let f and g be functions
mapping nonnegative integers to nonnegative integers. We write
f ∈ O(g) if there is a positive constant C such that

f(n) ≤ Cg(n)

for all sufficiently large n. “Sufficiently large” means that there exists
N such that f(n) ≤ Cg(n) for all n ≥ N . The notation “f ∈ O(g)”
is read as “f is in big-O of g.”

The next definition is exactly the same as the previous one, except that the
inequality is reversed from ≤ to ≥ (highlighted in red).

Formal definition of big-Ω notation. Let f and g be functions
mapping nonnegative integers to nonnegative integers. We write
f ∈ Ω(g) if there is a positive constant C such that

f(n)≥Cg(n)

for all sufficiently large n. “Sufficiently large” means that there exists
N such that f(n) ≥ Cg(n) for all n ≥ N . The notation “f ∈ Ω(g)”
is read as “f is in big-Omega of g.”

The next definition combines the previous two.

Formal definition of big-Θ notation. Let f and g be functions
mapping nonnegative integers to nonnegative integers. We write
f ∈ Θ(g) if f ∈ O(g) and f ∈ Ω(g).

Note: To apply this definition, you can use different values of C and N for the
two parts of the definition. You could write this as C1, N1 for the big-O part
and C2, N2 for the big-Omega part.
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Examples of applying the formal definitions of
asymptotic notation

Usually, we don’t bother applying the formal definitions. We just convert ex-
pressions into asymptotic notation by finding the dominant term. For example,
we know that 9n3 + 20n2 + 2 is in O(n3), because n3 is the dominant term in
this expression.

However, it is also important to have a mathematical understanding of the
formal definitions. To demonstrate this understanding, you need to be able to
apply the definitions explicitly. The following examples demonstrate how to do
this. Note that we do not expect calculus-based proofs in this course. Therefore,
it is permissible to use empirical evidence based on actual calculations, as in the
examples below. However, an optional rigorous proof based on calculus is also
given for those who are interested.

Example 1. Use the formal definition on O(·) to show that 9n3 + 20n2 + 2 ∈
O(n3).

Solution to Example 1. Write f(n) = 9n3 + 20n2 + 2. We need to find C
and N such that f(n) ≤ Cn3 whenever n ≥ N . After some experimentation
with different values of C, we find that a value of C = 15 looks promising, as
demonstrated by the following table of values:

n f(n) 15n3

1 31 15
2 154 120
3 425 405
4 898 960
5 1627 1875
6 2666 3240
7 4069 5145
8 5890 7680

From this, it appears that f(n) < 15n3 whenever n ≥ 4. Therefore, we can
take C = 15 and N = 4 in the definition of big-O, thus demonstrating that
f(n) ∈ O(n3).

Further remarks about the solution to Example 1. There are many
correct values of C,N that can be used to answer this problem. In fact, for
any value of C > 9, there exist infinitely many suitable values of N . Here are
a few possibilities: C = 20, N = 2; or C = 20, N = 3; or C = 20, N = 50; or
C = 12, N = 7; or C = 12, N = 8; or C = 12, N = 50.

Optional calculus-based solution to Example 1. We are interested in
comparing the values of f(n) = 9n3 + 20n2 + 2 and Cg(n) = 15n3. Let h(n) =
Cg(n)−f(n) = 6n3−20n2−2. The derivative of h is h′(n) = 18n2−40n, which
is positive for n ≥ 3. This guarantees that the difference between Cg(n) and
f(n) will continue to increase after it first becomes positive at n = 4, as shown
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in the table above. Hence, we conclude that f(n) < 15n3 whenever n ≥ 4, as
desired.

Example 2. Use the formal definition of Θ(·) to show that 5n log2 n+ 20n ∈
Θ(n log n).

Solution to Example 2. Write f(n) = 5n log2 n+20n. We need to find C1 and
N1 such that f(n) ≤ C1n log2 n whenever n ≥ N1 (for the definition of big-O).
And we need to find C2 and N2 such that f(n) ≥ C2n log2 n whenever n ≥ N2

(for the definition of big-Omega). After some experimentation with different
values, we find that C1 = 12 and C2 = 3 look promising, as demonstrated by
the following table of values:

n f(n) 12n log2 n 3n log2 n
1 20.00 0.00 0.00
2 50.00 24.00 6.00
3 83.77 57.06 14.26
4 120.00 96.00 24.00
5 158.05 139.32 34.83
6 197.55 186.12 46.53
7 238.26 235.82 58.95
8 280.00 288.00 72.00
9 322.65 342.35 85.59

10 366.10 398.63 99.66

From this, it appears that f(n) < 12n log2 n whenever n ≥ 8. Therefore, we
can take C1 = 12 and N1 = 8 in the definition of big-O, thus demonstrating
that f(n) ∈ O(n log n). It also appears that f(n) > 3n log2 n whenever n ≥ 1.
Therefore, we can take C2 = 3 and N2 = 1 in the definition of big-Omega, thus
demonstrating that f(n) ∈ Ω(n log n). Finally, the fact that f(n) ∈ O(n log n)
and f(n) ∈ Ω(n log n) satisfies the definition for big-Theta, and we conclude
that f(n) ∈ Θ(n log n).

Further remarks about the solution to Example 1. There are many
correct values of C1, N1, C2, N2 that can be used to answer this problem. In
fact, for any values of C1 > 5 and C2 < 5, there exist infinitely many suitable
values of N1, N2.
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