Example 1 (corresponds to PrintXs.java)

$$T(r) = T(n-1) + 2$$
, $T(1) = 3$

Step 1: Calculate the first few values to get some insight and understanding

Step 2: Expand the definition and look for a pattern

$$T(n) = T(n-2) + 2$$

= $(T(n-3)+2) + 2$
= $(T(n-3)+2) + 2 + 2$
= $(T(n-4)+2) + 2 + 2$
= $T(1) + 2 + 2 + 2$
= $T(1) + 2 + 2 + ... + 2$
= $3 + 2(n-1)$
= $2n + 1$

Step 3: check agreement with step 1. Also use an online tool like Wolfram Alpha to check the answer.

olve T(n)	=T(n-1)+2, T(1)=3	
NATURAL	LANGUAGE	III EXTENDED KEYBOAR
Input inter	pretation	
Input inter	T(n) = T(n-1) + 2	T(n)

Example 2 (corresponds to SayHi.java)

T(n) = T(n-3)+2 for $n \ge 0$; T(0) = T(1)=T(2)=5.

Step 1: Calculate the first few values to get some insight and understanding

Step 2: Expand the definition and look for a pattern

$$T(n) = T(n-3) + 2$$

= $T(n-6) + 2 + 2$
= $T(n-6) + 2 + 2 + 2$
Here we assumed *n* is a
multiple of 3, for simplicity
= $T(0) + 2 + 2 + 2 + 2 + \dots + 2 + 2$
= $5 + 2 \cdot \frac{n}{3}$
So we conclude $T(n) = 5 + \frac{2n}{3}$, when n is a multiple of 3.

Step 3: check agreement with step 1. Also use an online tool like Wolfram Alpha to check the answer.

Example 3 -- more challenging, comes from DoManyIncrements.java:

$$T(n) = 3T(n-1) + 2$$
, $T(0) = 5$

Step 1: Calculate the first few values to get some insight and understanding

Step 2: Expand the definition and look for a pattern

Step 3: check agreement with step 1. Also use an online tool like Wolfram Alpha to check the answer.

